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Traffic volume prediction on low-volume roadways: a Cubist
approach
Subasish Das

Texas A&M Transportation Institute, San Antonio, TX, USA

ABSTRACT
A significant aspect of the U.S. Department of Transportation’s
Highway Safety Improvement Program (HSIP) rulemaking is the
prerequisite that states must gather and utilize Model Inventory
of Roadway Elements (MIRE) for all public paved roads, including
low-volume roadways (LVR). States are particularly not equipped
with the ability to collect traffic volumes of LVRs due to issues
such as budgetary constraints. One alternative is to estimate
traffic volumes of LVRs using regression or machine learning (ML)
models. The present study accomplishes this by developing a ML
framework to estimate traffic volumes on LVRs. By using available
traffic counts on low-volume roads in Minnesota, this study
applies and validates three different ML models (random forest,
support vector regression, and Cubist) to estimate traffic volumes.
The models include various traffic and non-traffic (e.g.
demographic and socio-economic) variables. Overall, the Cubist
model shows better performance compared to support vector
regression and random forests. Additionally, the Cubist approach
provides rule-based equations for different subsets of data. The
findings of this study can be beneficial for transportation
communities associated with LVRs.
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Introduction

Under the United States Department of Transportation’s (USDOT) latest criteria, pub-
lished in the Highway Safety Improvement Program (HSIP) Final Rule in March 2016,
states will need to obtain annual average daily traffic (AADT) information along with
other Model Inventory Roadway Elements (MIRE) – Fundamental Data Elements
(FDEs) for all government-maintained highways, including non-Federal Aid System
(NFAS) highways. The traffic safety sector encompasses a broad range of study fields,
and crash data analysis is the most prominent among them. Crash data analysis is pri-
marily used to evaluate the safety of a particular transit unit (e.g. arterial junctions);
most model design methods focus on high-volume highways because appropriate infor-
mation for these roadway types is more readily available.

The Highway Performance Monitoring System (HPMS) does not denote any specific
method for sampling quantities of vehicles on NFAS highways. Many surveys emphasize
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the data-driven approach and thus concentrate on the event of the crash and its connec-
tion to a broad range of factors. The techniques included in the first version of the
Highway Safety Manual (HSM) are commonly used to forecast crashes on a roadway
segment or intersection (AASHTO 2010). The corresponding transport department
selects a sampling technique and an AADT assessment method which typically uses
the information on historical vehicle quantity or modeling methods for these highways.
If the traffic count data is unavailable, then projections are made based on comparable
roadway types. This method may lead to significant biases due to inaccurate estimates
and the lack of current data.

There have been new advancements in traffic volume estimation within the last
decade, specifically with statistical models and artificial intelligence (AI) or machine
learning (ML) algorithms. The latest statistical and ML methods include spatiotemporal
modeling, multivariate analysis, data mining techniques, and random parameters to
empirical Bayesian and full-Bayesian hierarchical approaches. Without any preceding
information of underlying processes, ML algorithms can identify non-linear and
complex associations between an independent factor and a wide range of dependent
factors. The key aim of ML models is to establish best fit models that provide high pre-
diction accuracy. To accomplish the research goal in this study, four data sets were used
to create a suitable database for the model development: (1) traffic volume counts of Min-
nesota low volume roadways (LVRs); (2) geometric features from the road inventory
database; (3) block group level demographic and economic variables from U.S. Census
and American Community Survey (ACS) data; and (4) distance to major roadways
(interstate and U.S. highways) from the count stations. Using the merged dataset, this
study utilized three robust ML models in estimating AADT on LVRs in Minnesota.

Literature review

Annual average daily traffic (AADT) estimation methods can be broadly divided into two
major sections: methods with traffic volume counts and methods with no traffic volume
counts.

Methods with traffic volume counts

Traffic volume count-based methods either rely on vehicle volume data acquired from
ongoing counting locations, mobile vehicle recorders, or both. Current numbers along
with socioeconomic data, network connection, and other information are used to esti-
mate AADT values and to create regression designs for uncounted sections.

Traditional approach and sampling
To gather local road and street traffic count data, Barrett et al. (2001) developed a random
sampling method with map dimensions of 0.1 miles for metropolitan regions and 0.2
miles for agricultural regions. The study experienced a complication when it tried to
use map dimensions under 0.05 miles but failed due to software problems. In another
study, Blume et al. (2005) developed a random sampling method using Florida census
information to create a methodology to predict vehicle miles traveled (VMT). This
research identified correlations between transport, demographic size, work size, and
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road size. Lloyd and French (2006) conducted a study to identify a sampling method to
anticipate VMT projections on local highways organized by Pennsylvania municipalities.
This study also used census information that was gathered at a county level and then
associated to AADT concentrations. In another study, Jessberger et al. (2016) evaluated
14 years of data to develop a new method of estimating AADT that included any number
of period increments.

Non-traditional approach and sampling
In Alberta, Canada, Sharma et al. (2001) established designs of neural networks to predict
AADT on LVRs. Using the Classification and Regression Tree (CART), Dixon (2004)
measured the annual growth level of AADT values. Local and low volume roadways indi-
cated lower annual growth levels than roads with high traffic volumes. Gecchelea et al.
(2011) studied TMG processes and clustering techniques to predict AADT more accu-
rately. Gastaldi et al. (2012) indicated that the most precise projections would come
from traffic data collected on weekdays. Conclusions were based on one-week annual
traffic count estimate method in Italy. By creating an OLS model, Lowry (2014) estimated
specific AADT scores in Idaho. The sub-sampling validation outcomes concluded that
comparable levels of AADT precision could be obtained using about one-fifth of
traffic count data.

Methods without traffic volume counts

Depending on non-traffic counts, models can generate AADT projections for individual
sections or for a set of prevalent trait road sections. Models generating disaggregated
assessments at segment level have a higher efficiency than models producing aggregated
projections. Nevertheless, models for individual sections involve disaggregated infor-
mation, which is often hard to acquire.

Disaggregated estimates
Zegeer et al. (1994) examined the link between road width and collision (AADT 2000
vehicles per day (vpd)) on rural LVRs. Roadways with comparatively wider shoulders
reported reduced collision rates, whereas the shoulder type (surfaced or unpaved) was
not statistically significant. Stamatiadis, Jones, and Aultman-Hall (1999) identified
several influencing variables on LVRs, classified by an AADT of less than 1000 vpd. In
another study using data from rural areas, Achwan and Rudjito (1999) examined the
association of road characteristics and traffic volume. Liu and Dissanayake (2008) ana-
lyzed the collision variables that were the most related by creating logistical regression
designs on gravel roads. Mohamad (1998) created a template of road forecast on
Indiana district highways. Xia et al. (1999) estimated AADT for non-state highways in
urbanized Florida regions and determined that traffic features, such as the number of
routes, functional classification, and region sort were the most significant influencing
predictors. McCord et al. (2003) used satellite imagery of elevated precision to estimate
AADT. For a spatial forecast of AADT, Selby and Kockelman (2011) used standard
kriging in uncounted Texas locations. Depending on Euclidean ranges, the research out-
comes contrasted with those using network paths. Apronti, Herpner, and Ksaibati (2015)
created a linear regression model and a logistic correlation method to anticipate AADT
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on LVRs in Wyoming. Findings concluded that both designs of regression are inexpen-
sive, simple, and easy to execute. Das and Sun (2015) applied support vector regression
technique to estimate traffic volumes on local roadways of eight parishes in Louisiana. In
another study, Das and Ioannis (2020) used interpretable ML models to estimate traffic
volumes on LVRs in Vermont.

Aggregated estimates
Shen, Zhao, and Ospina (1999) developed four multiple linear regression models to
project AADT values for off-system roads in Florida. Each model produced aggregated
estimates for different geographical sites. Seaver, Chatterjee, and Seaver (2000) deter-
mined the vehicle quantity on Georgia’s non-state highways. Zhao, Li, and Chow
(2004) conducted a regression analysis to detect feasible variables that influence
monthly adaptation factors in selected agricultural regions in Florida. In Kentucky,
Staats (2016) created six designs to evaluate aggregated local road vehicle quantities.

ML models

To measure the efficiency of estimating traffic volumes of LVRs, three ML regression
techniques (Random Forest (RF), Support Vector Regression (SVR) and Cubist) were
compared.

Cubist

Cubist, a rule-based ensemble regression model technique with separate linear regression
equation subsequent for each terminal node, was developed by Quinlan (1996; 1992).
The paths along the model tree are flattened into rules these rules are simplified and
pruned. In comparison to ordinary regression, model trees have been shown to be
more accurate. An additional technique to improve estimation uses similar training
cases, or instances. Cubist ensembles are created using committees, which are similar
to boosting. After the first model in the committee is created, the second model uses a
modified version of the outcome data based on whether the previous model under- or
over-predicted the outcome. For iteration m, the new outcome y∗ is computed using
the following equation:

y∗(m) = y− (̂y(m−1) − y) (1)

On the off chance that a test is under-predicted on the past cycle, the result is balanced
so that another time it is more likely to be over-predicted to compensate. This alteration
proceeds for each outfit emphasis.

Random forest (RF)

The importance of each variable was ordered using random forest (RF) algorithms. RF
strategy is dependent on the bagging principle (Breiman 2001) and random subspace
method (Ho 1998) that depends on building a compilation of decision trees with
random predictors.
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Out-of-bag error rate (OOB) and variable importance measures are the two vital
byproducts of the RF method. OOB is the misclassification rate that decreases as the
number of tree increment. The trees are grown to the maximum depth to reduce the
bias and correlation. Gini impurity and classification accuracy are used as the measures
of variable importance. This importance measure illustrates how much the mean squared
error or the ‘impurity’ increases when the specified variable is randomly permuted.

Support vector regression (SVR)

In 1963, Vapnik and Lerner presented the Generalized Portrait algorithm, which has a
fundamental algorithm for the development of Support Vector Machine (SVM). SVMs
are the statistical learning theory algorithms implementing the structural risk minimiz-
ation inductive principal to get excellent generalization on a restricted number of learn-
ing designs. Vapnik begun the field of statistical learning theory in 1974 (History of SVM
2020). On a premise of a distinguishable bipartition problem, Vapnik et al. presented the
SVM framework in 1992 at the AT & T Bell Laboratories (2004). SVM aims to delineate
the information x into a high-dimensional feature space F by using a nonlinear mapping
in a way to execute linear regression in this space.

Whereas keeping up all the most highlights that characterize the maximal margin
algorithm, the SV algorithm can also be applied to Support Vector Regression (SVR).
The SVR approach accounts for the error approximation in data with the generalization
of the model. With different forms of SVR, the classical model, ɛ-SVR, was discussed in
Smola and Schölkopf (2004) and Cornejo-Bueno et al. (2016).

Database development

A wide range of transportation data were collected from LVRs in all Minnesota counties
to estimate the traffic volume: (1) Minnesota LVR traffic count station data, (2) Minne-
sota road inventory database, (3) U.S. Census and American Community Survey (ACS)
data, and (4) distance to major roadways (Interstate and U.S. highways) from the count
stations.

Data sources

LVR traffic count data
Minnesota data contains traffic volume count data for 14,989 stations in 87 counties.
LVRs consider the following three functional classes:

. Rural collector (6R): 4024 stations

. Rural local (7R): 6543 stations

. Urban local (7U): 4422 stations

Demographic and economic data
U.S. Census and American Community Survey (ACS) data. Demographic information on
various spatial units are provided by the U.S. Census. Due to its higher relevance in mod-
eling outcomes, this study used the Census block group level demographic data.
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Conducted by the U.S. Census Bureau, the ACS is an ongoing national survey of U.S.
households to gather a wide variety of information such as a primary travel mode
from home to work. ACS is an imperative tool for tracking travel patterns. The ACS
supplies estimates for various levels: (a) 1-year estimates, (b) 3-year estimates, and (c)
5-year estimates. Due to the large sample size, practitioners usually use 3- or 5-year
ACS is more beneficial compared to 1-year estimates. The multi-year estimations have
benefits of statistical consistency for small population subgroups and less populated
areas (Shawn et al. 2017).

Longitudinal Employer-Household Dynamics (LEHD) data. Under the Local Employ-
ment Dynamics Partnership, the LEHD produces cost-effective, new, public-use data.
Moreover, states correspond to share unemployment insurance earnings data and the
Quarterly Census of Employment and Wages data with the U.S. Census Bureau. The
LEHD information gives both work (known as Workplace Area Characteristic or
WAC) and home (known as Residence Area Characteristic or RAC) Census block
data. These files are released at the state level and totaled by home Census block and
work Census block, respectively.

Distance to major highways: The network analyst extension of ArcGIS 10.4.1 is used to
determine the distance from LVRs to the nearest interstate and major highways. The
network analyst extension also has a tool called the origin-destination cost matrix. The
network distance is used in order to identify the shortest route. This method uses a
routed roadway layer that considers one-way directionality and elevation differences.
The shortest route within the network is identified between AADT count stations on
roads with functional classes 6R, 7R, and 7U and the closest intersection of interstate
and US Route.

Data integration

Figure 1 shows the overall data merging steps. The data preparation works involve two
software tools: ArcGIS 10.4.1 from Esri and open-source tool R. The following steps were
taken to develop the database:

Figure 1. Data merging flowchart.
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. Using ArcMap, select the count stations on LVRs. Assign the nearest road segment
data to the count station using the ‘near’ function.

. From the ACS data, population, housing unit, and income data are needed to be
selected. Assign count stations to the intersected block group level information.

. From the block level LEHD data, calculate block group level RAC and WAC values.
Assign these data to the merged data.

. Determine the shortest network distance between AADT count stations on functional
class 6R, 7R, and 7U roadways and intersections of interstates and US Routes. This is
accomplished using the origin-destination (OD) cost matrix tool within the ArcGIS
network analyst extension.

Exploratory data analysis

The multi-collinearity was examined using the variance inflation factor (VIF), and eight
variables are primarily selected for the model development. Since multi-collinearity
increases the instability of coefficient estimates, the multicollinearity problem was reme-
died by expressing the model regarding key independent variables. Table 1 lists some key
describe statistics of the key variables. The functional classifications described in Table 1
are 6R, 7R, and 7U; the mean, standard deviation, minimum, maximum, and interquar-
tile range is given for the AADT, the population, the housing units in the block group, the
number of occupants in the block group, work area characteristics, residential area
characteristics, the distance to the interstate from the count station, and the distance
to a U.S. highway from the count station for each of these classifications. Furthermore,

Table 1. Descriptive statistics of the key variables.
Functional classification Attribute Count Mean SD Min Max IQR

6R AADT 4024 425 487.8 5 4700 390
Popu 4024 1133 554.2 437 6396 560
HU 4024 591 297.7 210 2426 335
Occu 4024 591 297.7 210 2426 335
WAC 4024 285 403.9 2 6476 255
RAC 4024 554 298.2 151 3532 320
DistI 4024 45 42.4 0 214 54
DistUS 4024 12 15.6 0 158 11

7R AADT 6543 177 300.8 5 4700 150
Popu 6543 1076 490.5 62 6396 497
HU 6543 582 289.0 30 2426 318
Occu 6543 582 289.0 30 2426 318
WAC 6543 257 344.0 2 6001 255
RAC 6543 516 270.3 25 3532 293
DistI 6543 51 41.3 0 215 58
DistUS 6543 11 16.1 0 158 11

7U AADT 4422 1372 1150.7 5 5000 1460
Popu 4422 1805 1130.8 0 9734 1195
HU 4422 737 398.8 0 3220 458
Occu 4422 737 398.8 0 3220 458
WAC 4422 1402 2420.6 2 31,208 1280
RAC 4422 928 617.3 33 4779 660
DistI 4422 14 27.0 0 163 10
DistUS 4422 4 4.4 0 26 5

Notes: Popu = Population in block group, HU = Housing units in block group, Occu = Number of occupants in block
group, WAC =Work Area Characteristics (block group), RAC = Residential Area Characteristics (block group), DistI = Dis-
tance to Interstate from the count station, DistUS = Distance to U.S. Highway from the count station.
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box and violin plots for six variables are demonstrated in Figure 2. There are clear con-
trasts in AADT values and other variables by urban or rural locations and by functional
class. From Figure 2, it is found that AADT, population density, and housing unit density
in rural LVRs have higher mean and standard deviations compared to urban local and
rural collector. In the same way, the mean and the standard deviation of RAC and
WAC of urban local is considerably higher than the two other regions. But comparing
the distance to interstate of these regions indicates the negligible difference between
their means and their standard deviations.

Methodology

This study conducted a five-fold cross-validation procedure to execute validation on the
dataset in an iterative fashion. To accomplish this, this study portioned the full dataset
into five equal subsamples that were used successively to independently validate the
trained based on the four remaining subsamples. This strategy guaranteed a decreased
computation time for three different algorithmic techniques used in this study. The stan-
dard statistical measures used to evaluate model performance incorporate the coefficient
of determination (R2), Root Mean Square Error (RMSE), and mean absolute error
(MAE). For example, RMSE is the standard deviation of the residuals, which is con-
sidered as a measure of the dispersion of the residual measures. It gauges the parameter
values, the standard deviation of the error term with certain degrees of freedom or DOF

Figure 2. Box and violin plots of key variables.
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(consider DOF as n). The formulation of RMSE can be expressed as:

RMSE =
�����������������∑n

i=1 (ŷi − yi)
2

n

√
(2)

Smaller RMSEs are associated with smaller standard errors, which indicate better
model fitness. This study used two open source R packages (cubist and caret) to apply
the ML algorithms (Kuhn and Quinlan 2018; Kuhn 2018). The RMSE measures, as
shown in Table 2, can provide evidence of model performances. The outcome measures
show that the Cubist model yields the highest accuracy than other two ML models (RF
and SVR). The three models were compared using their minimum, first quartile, median,
mean, third quartile, and maximum values.

The Cubist model’s performance was later used to create the rules-based SPFs. A com-
mittee is a boosting feature within the Cubist model where repetitive model trees are pro-
duced in succession. After the generation of the first tree, the following trees are formed
based on adjusted versions to the training data result: if the model over-predicts a value,
the following model is adjusted accordingly. In contrast to traditional boosting, the pre-
dictions from each model tree are not averaged based on stage weights within each com-
mittee; the final prediction is found by a simple mean of the predictions from each
previous model tree. This study used the committee method to regulate the number of
model trees. The Cubist model also uses nearest–neighbors to change the predictions
from the rule-based model. First, a model tree (with or without consideration of any
committee) is created. Once this model makes a sample prediction, Cubist finds its
nearest neighbors and calculates the average of these training set points. Readers can
consult Quinlan (1993) for more information about these adjustment criteria.

Cubist models can be actualized and utilized successfully with the determination of
exceptionally few tunable model parameters. In most cases, because a number of rules
will need to be optimized for the given regression problem, it makes this procedure
exceedingly alluring as data driven tools for understanding complicated associations
between dependent and independent variables. This study used the complete dataset
for the final regression rules. Four different instances (AASHTO 2010; Blume et al.
2005; Jessberger et al. 2016; Dixon 2004) were chosen in the final stage of modeling per-
formance. Based on the preparatory investigations, it was found that committees higher
than 5 did not lead to extra changes in model estimation. The instances are limited to 7 to
reduce computation time. The RMSE values generated from different tuning or commit-
tee-instance scenarios for 6R, 7R, and 7U are shown in Figure 3.

To see how proficient the estimate is in terms of the estimated variability or precision,
one can quantify the coefficient of variation (i.e. the quotient of a standard deviation and
a mean). Table 3 lists the model performance measures for the final models of the three

Table 2. RMSE Values for different algorithms.
Models Minimum First quartile Median Mean Third quartile Maximum

RMSE
RF 17.72 18.01 18.98 18.86 21.02 24.51
SVR 17.68 18.23 19.16 19.23 22.41 24.68
Cubist 16.98 17.67 18.29 18.14 20.78 22.35
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Figure 3. Tuning parameters and RMSE values.
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functional classes compared in this table. The number of stations, committees, RSME, R2,
and MAE are listed for comparison purposes. The overall contention is that the Cubist
model performs well in both training and test data.

Results and discussion

Where each tree divides, Cubist produces a linear model (after performing the feature
selection) that allows terms for each variable used in the existing division or any division
above it. Thus, the final prediction is a result of all the linear models ranging from the
original node to the terminal node. The attribute usage percentages shown in Table 4
reflect all of the models used for the prediction. The data were evaluated in the table
by calculating the mean error, relative error, and correlation coefficient. The presence
of a relationship is increased with a higher correlation coefficient. The important predic-
tor variables include population, WAC, and distance to Interstate, which is coherent with
the training and test data. Distance to US and Housing units are the significant contri-
butor in the urban local roadways. These two variables are not significant in rural models.

It is important to note that the Cubist algorithm relies on rule-based multivariate
linear regression models rather than an uninterpretable ML model. This unique
feature makes Cubist attractive to the researchers. A linear model developed from a
rule can be used to predict traffic volume at a location as a function of exposure (i.e.
population, RAC, WAC). Tables 5–7 list the generated rules and linear models developed
by each rule for traffic volumes of different low volume roadways. It is worth noting that
the sum of the number of cases is not needed to be the total number of cases. Each rule
lists their number of cases, mean (range), estimation error, and model by rules. During
interpreting each equation, it is important to recall that several rules can contemplate the
identical segment feature if it is in the criteria of the generated rules.

Table 3. Model performances.

Functional
class

Count
stations Committees

RMSE R2 MAE

Train Test Train Test Train Test

6R 3216 5 413.100 464.835 0.3056 0.2757 257.164 279.491
7R 5234 5 262.934 304.118 0.2460 0.2075 132.358 144.212
7U 3536 5 1076.231 1270.798 0.1450 0.1025 818.509 916.211

Table 4. Attribute usage in the models.
6R 7R 7U

Training data Test data Training data Test data Training data Test data

Attributes
DistI 86% 90% 69% 93% 89% 98%
DistUS 31% 3% 35% 25% 82% 60%
RAC 81% 39% 41% 47% 31% 38%
HU 14% 21% 40% 7% 91% 79%
WAC 77% 55% 51% 88% 67% 97%
Popu 69% 64% 68% 72% 80% 56%
Route_Syst 4% – 27% – 36% 58%
Data evaluation
Average error 258.8 276.6 134.4 148.7 866.1 995.9
Relative error 0.80 0.90 0.78 0.87 0.94 1.07
Correlation coefficient 0.60 0.45 0.48 0.49 0.37 0.27
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Conclusions

In transportation engineering, traffic volume is an important measurement used in safety
and operational design. Low-volume roads (LVRs) are major components of a road
network in any locality. However, traffic count-stations are often limited to roadways
with high functional classifications, and such information is rarely available for LVRs.
As LVR traffic continues to grow due to economic growth, estimating traffic volume
becomes a necessity. A recent report indicated the importance of data-driven and inno-
vation approaches to estimate traffic volume on LVRs. In previous studies, both statistical
and ML models have been used in estimating traffic volumes. Regression models have
been extensively used to estimate traffic volumes in many studies. However, regression
models, in general, examine the average effects of the factors and ignore subgroup or
cluster effect. As a result, interventions are often geared towards the mean effect,
without consideration of any subgroup effect. On the other hand, ML models provide
better prediction by considering the subgroup effect. Therefore, these models are not
useful for practitioners due to their lack of interpretability.

This paper has demonstrated the value of using rule-based analysis methods to ident-
ify subgroups with heterogeneous profiles without imposing assumptions on the sub-
groups or method by using traffic count station data on the LVRs in, in this case,
Minnesota. Generally, Cubist is characterized by a better performance in predicting
traffic volume. Instead of an uninterpretable ML model, consideration of rule-based
multi-variate linear regression models makes Cubist poised to deliver a model expla-
nation. The regression models from each rule predict annual average daily traffic
(AADT) for a particular LVR. This study has shown that ML algorithms such as
Cubist are more robust compared to statistical models because no hidden assumptions
are required. The rule-based estimation models are useful for traffic engineers for easy
interpretation and decision making to improve traffic volume estimation on LVRs.

This study has, however, some limitations. First, the numbers of variables used in this
analysis are limited. Second, results from the network-level conventional traffic volume
estimation methods are not compared with the current model outcomes. Future replica-
tions with additional roadway geometry and demographic data are needed to gather
better estimates of traffic volumes on LVRs.
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